Artikel

VC: a method for estimating time-varying coefficients in linear models

This paper describes a moments estimator for a standard state-space model with coefficients generated by a random walk. The method calculates the conditional expectations of the coefficients, given the observations. A penalized least squares estimation is linked to the GLS (Aitken) estimates of the corresponding linear model with time-invariant parameters. The estimates are moments estimates. They do not require the disturbances to be Gaussian, but if they are, the estimates are asymptotically equivalent to maximum likelihood estimates. In contrast to Kalman filtering, no specification of an initial state or an initial covariance matrix is required. While the Kalman filter is one sided, the filter proposed here is two sided and therefore uses more of the available information for estimating intermediate states. Further, the proposed filter has a clear descriptive interpretation.

Sprache
Englisch

Erschienen in
Journal: Journal of the Korean Statistical Society ; ISSN: 2005-2863 ; Volume: 50 ; Year: 2021 ; Issue: 4 ; Pages: 1164-1196 ; Singapore: Springer

Klassifikation
Mathematik
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Construction and Estimation
Model Evaluation, Validation, and Selection
Thema
Time-series analysis
Linear model
State-space estimation
Time-varying coefficients
Moments estimation. Kalman filtering
Penalized least squares
HP-Filter

Ereignis
Geistige Schöpfung
(wer)
Schlicht, Ekkehart
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Singapore
(wann)
2021

DOI
doi:10.1007/s42952-021-00110-y
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Schlicht, Ekkehart
  • Springer

Entstanden

  • 2021

Ähnliche Objekte (12)