Konferenzbeitrag

Multivariate Wishart Stochastic Volatility Models

We generalize the basic Wishart multivariate stochastic volatility model of Philipov and Glickmann (2006) to encompass regime switching behavior. The latent state variable is driven by a first-order Markov process. In order to estimate the proposed model we use Bayesian Markov Chain Monte Carlo procedures. For the computation of filtered estimates of the latent variances and covariances we rely upon particle filter techniques. The model is applied to five European stock index returns. Our results show that our proposed regime-switching specification substantially improves the estimates of the conditional covariance matrix and the VaR performance relative to the basic model.

Language
Englisch

Bibliographic citation
Series: Beiträge zur Jahrestagung des Vereins für Socialpolitik 2010: Ökonomie der Familie - Session: Advances in Time Series Analysis ; No. B6-V2

Classification
Wirtschaft
Bayesian Analysis: General
Statistical Simulation Methods: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Subject
Markov Switching , MCMC
Multivariate Stochastic Volatility
Particle Filter
Volatility Spillovers

Event
Geistige Schöpfung
(who)
Gribisch, Bastian
Liesenfeld, Roman
Event
Veröffentlichung
(who)
Verein für Socialpolitik
(where)
Frankfurt a. M.
(when)
2010

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Konferenzbeitrag

Associated

  • Gribisch, Bastian
  • Liesenfeld, Roman
  • Verein für Socialpolitik

Time of origin

  • 2010

Other Objects (12)