Konferenzbeitrag
Identification of Structural Vector Autoregressions by Stochastic Volatility
We propose to exploit stochastic volatility for statistical identification of Structural Vector Autoregressive models (SV-SVAR). We discuss full and partial identification of the model and develop efficient EM algorithms for Maximum Likelihood inference. Simulation evidence suggests that the SV-SVAR works well in identifying structural parameters also under misspecification of the variance process, particularly if compared to alternative heteroskedastic SVARs. We apply the model to study the interdependence between monetary policy and stock markets. Since shocks identified by heteroskedasticity may not be economically meaningful, we exploit the framework to test conventional exclusion restrictions as well as Proxy SVAR restrictions which are overidentifying in the heteroskedastic model.
- Sprache
-
Englisch
- Erschienen in
-
Series: Beiträge zur Jahrestagung des Vereins für Socialpolitik 2018: Digitale Wirtschaft - Session: Time Series ; No. D04-V3
- Klassifikation
-
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- Thema
-
Structural Vector Autoregression (SVAR)
Identification via heteroskedasticity
Stochastic Volatility
Proxy SVAR
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Bertsche, Dominik
Braun, Robin
- Ereignis
-
Veröffentlichung
- (wer)
-
ZBW - Leibniz-Informationszentrum Wirtschaft
- (wo)
-
Kiel, Hamburg
- (wann)
-
2018
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Konferenzbeitrag
Beteiligte
- Bertsche, Dominik
- Braun, Robin
- ZBW - Leibniz-Informationszentrum Wirtschaft
Entstanden
- 2018