Optimizing Content with A/B Headline Testing: Changing Newsroom Practices

Abstract: Audience analytics are an increasingly essential part of the modern newsroom as publishers seek to maximize the reach and commercial potential of their content. On top of a wealth of audience data collected, algorithmic approaches can then be applied with an eye towards predicting and optimizing the performance of content based on historical patterns. This work focuses specifically on content optimization practices surrounding the use of A/B headline testing in newsrooms. Using such approaches, digital newsrooms might audience-test as many as a dozen headlines per article, collecting data that allows an optimization algorithm to converge on the headline that is best with respect to some metric, such as the click-through rate. This article presents the results of an interview study which illuminate the ways in which A/B testing algorithms are changing workflow and headline writing practices, as well as the social dynamics shaping this process and its implementation within US newsroo

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Veröffentlichungsversion
begutachtet (peer reviewed)
In: Media and Communication ; 7 (2019) 1 ; 117-127

Klassifikation
Nachrichtenmedien, Journalismus, Verlagswesen

Ereignis
Veröffentlichung
(wo)
Mannheim
(wann)
2019
Urheber
Hagar, Nick
Diakopoulos, Nicholas

DOI
10.17645/mac.v7i1.1801
URN
urn:nbn:de:101:1-2019052715332135583745
Rechteinformation
Open Access; Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Hagar, Nick
  • Diakopoulos, Nicholas

Entstanden

  • 2019

Ähnliche Objekte (12)