Journal article | Zeitschriftenartikel

Optimizing Content with A/B Headline Testing: Changing Newsroom Practices

Audience analytics are an increasingly essential part of the modern newsroom as publishers seek to maximize the reach and commercial potential of their content. On top of a wealth of audience data collected, algorithmic approaches can then be applied with an eye towards predicting and optimizing the performance of content based on historical patterns. This work focuses specifically on content optimization practices surrounding the use of A/B headline testing in newsrooms. Using such approaches, digital newsrooms might audience-test as many as a dozen headlines per article, collecting data that allows an optimization algorithm to converge on the headline that is best with respect to some metric, such as the click-through rate. This article presents the results of an interview study which illuminate the ways in which A/B testing algorithms are changing workflow and headline writing practices, as well as the social dynamics shaping this process and its implementation within US newsrooms.

Optimizing Content with A/B Headline Testing: Changing Newsroom Practices

Urheber*in: Hagar, Nick; Diakopoulos, Nicholas

Namensnennung 4.0 International

0
/
0

ISSN
2183-2439
Umfang
Seite(n): 117-127
Sprache
Englisch
Anmerkungen
Status: Veröffentlichungsversion; begutachtet (peer reviewed)

Erschienen in
Media and Communication, 7(1)

Thema
Publizistische Medien, Journalismus,Verlagswesen
interaktive, elektronische Medien
Kommunikatorforschung, Journalismus
Digitale Medien
Nachrichten
Inhalt
Optimierung
Redaktion
Leserbindung
Reichweite

Ereignis
Geistige Schöpfung
(wer)
Hagar, Nick
Diakopoulos, Nicholas
Ereignis
Veröffentlichung
(wo)
Portugal
(wann)
2019

DOI
Rechteinformation
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
Letzte Aktualisierung
21.06.2024, 16:27 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Zeitschriftenartikel

Beteiligte

  • Hagar, Nick
  • Diakopoulos, Nicholas

Entstanden

  • 2019

Ähnliche Objekte (12)