Journal article | Zeitschriftenartikel
Optimizing Content with A/B Headline Testing: Changing Newsroom Practices
Audience analytics are an increasingly essential part of the modern newsroom as publishers seek to maximize the reach and commercial potential of their content. On top of a wealth of audience data collected, algorithmic approaches can then be applied with an eye towards predicting and optimizing the performance of content based on historical patterns. This work focuses specifically on content optimization practices surrounding the use of A/B headline testing in newsrooms. Using such approaches, digital newsrooms might audience-test as many as a dozen headlines per article, collecting data that allows an optimization algorithm to converge on the headline that is best with respect to some metric, such as the click-through rate. This article presents the results of an interview study which illuminate the ways in which A/B testing algorithms are changing workflow and headline writing practices, as well as the social dynamics shaping this process and its implementation within US newsrooms.
- ISSN
-
2183-2439
- Umfang
-
Seite(n): 117-127
- Sprache
-
Englisch
- Anmerkungen
-
Status: Veröffentlichungsversion; begutachtet (peer reviewed)
- Erschienen in
-
Media and Communication, 7(1)
- Thema
-
Publizistische Medien, Journalismus,Verlagswesen
interaktive, elektronische Medien
Kommunikatorforschung, Journalismus
Digitale Medien
Nachrichten
Inhalt
Optimierung
Redaktion
Leserbindung
Reichweite
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Hagar, Nick
Diakopoulos, Nicholas
- Ereignis
-
Veröffentlichung
- (wo)
-
Portugal
- (wann)
-
2019
- DOI
- Rechteinformation
-
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
- Letzte Aktualisierung
-
21.06.2024, 16:27 MESZ
Datenpartner
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Zeitschriftenartikel
Beteiligte
- Hagar, Nick
- Diakopoulos, Nicholas
Entstanden
- 2019