Artikel

A principal component-guided sparse regression approach for the determination of bitcoin returns

We examine the significance of fourty-one potential covariates of bitcoin returns for the period 2010-2018 (2872 daily observations). The recently introduced principal component-guided sparse regression is employed. We reveal that economic policy uncertainty and stock market volatility are among the most important variables for bitcoin. We also trace strong evidence of bubbly bitcoin behavior in the 2017-2018 period.

Language
Englisch

Bibliographic citation
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 13 ; Year: 2020 ; Issue: 2 ; Pages: 1-10 ; Basel: MDPI

Classification
Wirtschaft
Subject
bitcoin
bubble
cryptocurrency
flexible least squares
LASSO
PC-LASSO
principal component
sparse regression

Event
Geistige Schöpfung
(who)
Panagiōtidēs, Theodōros
Stengos, Thanasēs
Vravosinos, Orestis
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2020

DOI
doi:10.3390/jrfm13020033
Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Panagiōtidēs, Theodōros
  • Stengos, Thanasēs
  • Vravosinos, Orestis
  • MDPI

Time of origin

  • 2020

Other Objects (12)