Artikel

Estimating and forecasting generalized fractional long memory stochastic volatility models

This paper considers a flexible class of time series models generated by Gegenbauer polynomials incorporating the long memory in stochastic volatility (SV) components in order to develop the General Long Memory SV (GLMSV) model. We examine the corresponding statistical properties of this model, discuss the spectral likelihood estimation and investigate the finite sample properties via Monte Carlo experiments. We provide empirical evidence by applying the GLMSV model to three exchange rate return series and conjecture that the results of out-of-sample forecasts adequately confirm the use of GLMSV model in certain financial applications.

Language
Englisch

Bibliographic citation
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 10 ; Year: 2017 ; Issue: 4 ; Pages: 1-16 ; Basel: MDPI

Classification
Wirtschaft
Methodological Issues: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Financial Econometrics
Subject
stochastic volatility
GARCH models
Gegenbauer polynomial
long memory
spectral likelihood
estimation
forecasting

Event
Geistige Schöpfung
(who)
Peiris, Shelton
Asai, Manabu
McAleer, Michael
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2017

DOI
doi:10.3390/jrfm10040023
Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Peiris, Shelton
  • Asai, Manabu
  • McAleer, Michael
  • MDPI

Time of origin

  • 2017

Other Objects (12)