Arbeitspapier
Validity of Wild Bootstrap Inference with Clustered Errors
We study asymptotic inference based on cluster-robust variance estimators for regression models with clustered errors, focusing on the wild cluster bootstrap and the ordinary wild bootstrap. We state conditions under which both asymptotic and bootstrap tests and confidence intervals will be asymptotically valid. These conditions put limits on the rates at which the cluster sizes can increase as the number of clusters tends to infinity. To include power in the analysis, we allow the data to be generated under sequences of local alternatives. Simulation experiments illustrate the theoretical results and show that all methods can work poorly in certain cases.
- Sprache
-
Englisch
- Erschienen in
-
Series: Queen's Economics Department Working Paper ; No. 1383
- Klassifikation
-
Wirtschaft
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
- Thema
-
Clustered data
cluster-robust variance estimator
CRVE
inference
wild bootstrap
wild cluster bootstrap
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Djogbenou, Antoine
MacKinnon, James G.
Nielsen, Morten Ørregaard
- Ereignis
-
Veröffentlichung
- (wer)
-
Queen's University, Department of Economics
- (wo)
-
Kingston (Ontario)
- (wann)
-
2017
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Djogbenou, Antoine
- MacKinnon, James G.
- Nielsen, Morten Ørregaard
- Queen's University, Department of Economics
Entstanden
- 2017