Arbeitspapier
Reworking Wild Bootstrap Based Inference for Clustered Errors
Many empirical projects are well suited to incorporating a linear difference-in-differences research design. While estimation is straightforward, reliable inference can be a challenge. Past research has not only demonstrated that estimated standard errors are biased dramatically downwards in models possessing a group clustered design, but has also suggested a number of bootstrap-based improvements to the inference procedure. In this paper, I first demonstrate using Monte Carlo experiments, that these bootstrap-based procedures and traditional cluster-robust standard errors perform poorly in situations with fewer than eleven clusters - a setting faced in many empirical applications. With few clusters, the wild cluster bootstrap-t procedure results in p-values that are not point identified. I subsequently introduce two easy-to-implement alternative procedures that involve the wild bootstrap. Further Monte Carlo simulations provide evidence that the use of a 6-point distribution with the wild bootstrap can improve the reliability of inference.
- Sprache
-
Englisch
- Erschienen in
-
Series: Queen's Economics Department Working Paper ; No. 1315
- Klassifikation
-
Wirtschaft
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
- Thema
-
CRVE
grouped data
clustered data
panel data
cluster wild bootstrap
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Webb, Matthew D.
- Ereignis
-
Veröffentlichung
- (wer)
-
Queen's University, Department of Economics
- (wo)
-
Kingston (Ontario)
- (wann)
-
2013
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Webb, Matthew D.
- Queen's University, Department of Economics
Entstanden
- 2013