Arbeitspapier

Reworking Wild Bootstrap Based Inference for Clustered Errors

Many empirical projects are well suited to incorporating a linear difference-in-differences research design. While estimation is straightforward, reliable inference can be a challenge. Past research has not only demonstrated that estimated standard errors are biased dramatically downwards in models possessing a group clustered design, but has also suggested a number of bootstrap-based improvements to the inference procedure. In this paper, I first demonstrate using Monte Carlo experiments, that these bootstrap-based procedures and traditional cluster-robust standard errors perform poorly in situations with fewer than eleven clusters - a setting faced in many empirical applications. With few clusters, the wild cluster bootstrap-t procedure results in p-values that are not point identified. I subsequently introduce two easy-to-implement alternative procedures that involve the wild bootstrap. Further Monte Carlo simulations provide evidence that the use of a 6-point distribution with the wild bootstrap can improve the reliability of inference.

Sprache
Englisch

Erschienen in
Series: Queen's Economics Department Working Paper ; No. 1315

Klassifikation
Wirtschaft
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
Thema
CRVE
grouped data
clustered data
panel data
cluster wild bootstrap

Ereignis
Geistige Schöpfung
(wer)
Webb, Matthew D.
Ereignis
Veröffentlichung
(wer)
Queen's University, Department of Economics
(wo)
Kingston (Ontario)
(wann)
2013

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Webb, Matthew D.
  • Queen's University, Department of Economics

Entstanden

  • 2013

Ähnliche Objekte (12)