The suitability of differentiable, physics-informed machine learning hydrologic models for ungauged regions and climate change impact assessment

Abstract δ δ δ δ δ δ models are strong candidates for regional and global-scale hydrologic simulations and climate change impact assessment.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
The suitability of differentiable, physics-informed machine learning hydrologic models for ungauged regions and climate change impact assessment ; volume:27 ; number:12 ; year:2023 ; pages:2357-2373 ; extent:17
Hydrology and earth system sciences ; 27, Heft 12 (2023), 2357-2373 (gesamt 17)

Creator
Feng, Dapeng
Beck, Hylke
Lawson, Kathryn
Shen, Chaopeng

DOI
10.5194/hess-27-2357-2023
URN
urn:nbn:de:101:1-2023070604272926526849
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:46 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Feng, Dapeng
  • Beck, Hylke
  • Lawson, Kathryn
  • Shen, Chaopeng

Other Objects (12)