The suitability of differentiable, physics-informed machine learning hydrologic models for ungauged regions and climate change impact assessment
Abstract δ δ δ δ δ δ models are strong candidates for regional and global-scale hydrologic simulations and climate change impact assessment.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
The suitability of differentiable, physics-informed machine learning hydrologic models for ungauged regions and climate change impact assessment ; volume:27 ; number:12 ; year:2023 ; pages:2357-2373 ; extent:17
Hydrology and earth system sciences ; 27, Heft 12 (2023), 2357-2373 (gesamt 17)
- Urheber
-
Feng, Dapeng
Beck, Hylke
Lawson, Kathryn
Shen, Chaopeng
- DOI
-
10.5194/hess-27-2357-2023
- URN
-
urn:nbn:de:101:1-2023070604272926526849
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:46 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Feng, Dapeng
- Beck, Hylke
- Lawson, Kathryn
- Shen, Chaopeng