Artikel

Mean-payoff games with ω-regular specifications

Multi-player mean-payoff games are a natural formalism for modelling the behaviour of concurrent and multi-agent systems with self-interested players. Players in such a game traverse a graph, while attempting to maximise a (mean-)payoff function that depends on the play generated. As with all games, the equilibria that could arise may have undesirable properties. However, as system designers, we typically wish to ensure that equilibria in such systems correspond to desirable system behaviours, for example, satisfying certain safety or liveness properties. One natural way to do this would be to specify such desirable properties using temporal logic. Unfortunately, the use of temporal logic specifications causes game theoretic verification problems to have very high computational complexity. To address this issue, we consider ω-regular specifications. These offer a concise and intuitive way of specifying system behaviours with a comparatively low computational overhead. The main results of this work are characterisation and complexity bounds for the problem of determining if there are equilibria that satisfy a given ω-regular specification in a multi-player mean-payoff game in a number of computationally relevant game-theoretic settings.

Sprache
Englisch

Erschienen in
Journal: Games ; ISSN: 2073-4336 ; Volume: 13 ; Year: 2022 ; Issue: 1 ; Pages: 1-37 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
automated verification
equilibria
game theory
mean-payoff games
multi-agent systems
multi-player games
temporal logic

Ereignis
Geistige Schöpfung
(wer)
Gutierrez, Julian
Steeples, Thomas
Wooldridge, Michael J.
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2022

DOI
doi:10.3390/g13010019
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Gutierrez, Julian
  • Steeples, Thomas
  • Wooldridge, Michael J.
  • MDPI

Entstanden

  • 2022

Ähnliche Objekte (12)