Arbeitspapier

Fully Modified Estimation in Cointegrating Polynomial Regressions: Extensions and Monte Carlo Comparison

We study a set of fully modified (FM) estimators in multivariate cointegrating polynomial regressions. Such regressions allow for deterministic trends, stochastic trends, and integer powers of stochastic trends to enter the cointegrating relations. A new feasible generalized least squares estimator is proposed. Our estimator incorporates: (1) the inverse autocovariance matrix of multidimensional errors and (2) second-order bias corrections. The resulting estimator has the intuitive interpretation of applying a weighted least squares objective function to filtered data series. Moreover, the required second-order bias corrections are convenient byproducts of our approach and lead to a conventional asymptotic inference. Based on different FM estimators, multiple multivariate KPSS-type of tests for the null of cointegration are constructed. We then undertake a comprehensive Monte Carlo study to compare the performance of the FM estimators and the related tests. We find good performance of the proposed estimator and the implied test statistics for linear hypotheses and cointegration.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. TI 2022-093/III

Klassifikation
Wirtschaft
Hypothesis Testing: General
Estimation: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Thema
Cointegrating Polynomial Regression
Cointegration Testing
Fully Modified Estimation
Generalized Least Squares

Ereignis
Geistige Schöpfung
(wer)
Lin, Yicong
Reuvers, Hanno
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2022

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Lin, Yicong
  • Reuvers, Hanno
  • Tinbergen Institute

Entstanden

  • 2022

Ähnliche Objekte (12)