Arbeitspapier
Cointegrating polynomial regressions: Fully modified OLS estimation and inference
This paper develops a fully modified OLS estimator for cointegrating polynomial regressions, i.e. for regressions including deterministic variables, integrated processes and powers of integrated processes as explanatory variables and stationary errors. The errors are allowed to be serially correlated and the regressors are allowed to be endogenous. The paper thus extends the fully modified approach developed in Phillips and Hansen (1990). The FM-OLS estimator has a zero mean Gaussian mixture limiting distribution, which is the basis for standard asymptotic inference. In addition Wald and LM tests for specification as well as a KPSS-type test for cointegration are derived. The theoretical analysis is complemented by a simulation study which shows that the developed FM-OLS estimator and tests based upon it perform well in the sense that the performance advantages over OLS are by and large similar to the performance advantages of FM-OLS over OLS in cointegrating regressions.
- Sprache
-
Englisch
- Erschienen in
-
Series: Reihe Ökonomie / Economics Series ; No. 264
- Klassifikation
-
Wirtschaft
Hypothesis Testing: General
Estimation: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- Thema
-
cointegrating polynomial regression
fully modified OLS estimation
integrated process , testing
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Hong, Seung Hyun
Wagner, Martin
- Ereignis
-
Veröffentlichung
- (wer)
-
Institute for Advanced Studies (IHS)
- (wo)
-
Vienna
- (wann)
-
2011
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Hong, Seung Hyun
- Wagner, Martin
- Institute for Advanced Studies (IHS)
Entstanden
- 2011