Fracture resistance of a two-piece zirconia implant system after artificial loading and/or hydrothermal aging—an in vitro investigation

Abstract: The purpose of the present study was to assess the fracture resistance of a two-piece alumina-toughened zirconia implant system with a carbon-reinforced PEEK abutment screw. Methods: Thirty-two implants with screw-retained zirconia abutments were divided into four groups of eight samples each. Group 0 (control group) was neither loaded nor aged in a chewing simulator; group H was hydrothermally aged; group L was loaded with 98 N; and group HL was subjected to both hydrothermal aging and loading in a chewing simulator. One sample of each group was evaluated for t-m phase transformation, and the others were loaded until fracture. A one-way ANOVA was applied to evaluate differences between the groups. Results: No implant fracture occurred during the artificial chewing simulation. Furthermore, there were no statistically significant differences (p > 0.05) between the groups in terms of fracture resistance (group 0: 783 ± 43 N; group H: 742 ± 43 N; group L: 757 ± 86 N; group HL: 740 ± 43 N) and bending moment (group 0: 433 ± 26 Ncm; group H: 413 ± 23 Ncm; group L: 422 ± 49 Ncm; group HL: 408 ± 27 Ncm). Conclusions: Within the limitations of the present investigation, it can be concluded that artificial loading and hydrothermal aging do not reduce the fracture resistance of the investigated implant system

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Journal of Functional Biomaterials. - 14, 12 (2023) , 567, ISSN: 2079-4983

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2024
Urheber

DOI
10.3390/jfb14120567
URN
urn:nbn:de:bsz:25-freidok-2426507
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:51 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2024

Ähnliche Objekte (12)