Artificial intelligence-driven prediction modeling and decision making in spine surgery using hybrid machine learning models

Abstract: Healthcare systems worldwide generate vast amounts of data from many different sources. Although of high complexity for a human being, it is essential to determine the patterns and minor variations in the genomic, radiological, laboratory, or clinical data that reliably differentiate phenotypes or allow high predictive accuracy in health-related tasks. Convolutional neural networks (CNN) are increasingly applied to image data for various tasks. Its use for non-imaging data becomes feasible through different modern machine learning techniques, converting non-imaging data into images before inputting them into the CNN model. Considering also that healthcare providers do not solely use one data modality for their decisions, this approach opens the door for multi-input/mixed data models which use a combination of patient information, such as genomic, radiological, and clinical data, to train a hybrid deep learning model. Thus, this reflects the main characteristic of artificial intelligence: simulating natural human behavior. The present review focuses on key advances in machine and deep learning, allowing for multi-perspective pattern recognition across the entire information set of patients in spine surgery. This is the first review of artificial intelligence focusing on hybrid models for deep learning applications in spine surgery, to the best of our knowledge. This is especially interesting as future tools are unlikely to use solely one data modality. The techniques discussed could become important in establishing a new approach to decision-making in spine surgery based on three fundamental pillars: (1) patient-specific, (2) artificial intelligence-driven, (3) integrating multimodal data. The findings reveal promising research that already took place to develop multi-input mixed-data hybrid decision-supporting models. Their implementation in spine surgery may hence be only a matter of time

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Journal of personalized medicine. - 12, 4 (2022) , 509, ISSN: 2075-4426

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2022
Creator

DOI
10.3390/jpm12040509
URN
urn:nbn:de:bsz:25-freidok-2262911
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:35 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2022

Other Objects (12)