Uniformly Convex Metric Spaces

Abstract: In this paper the theory of uniformly convex metric spaces is developed. These spaces exhibit ageneralized convexity of the metric from a fixed point. Using a (nearly) uniform convexity property a simpleproof of reflexivity is presented and a weak topology of such spaces is analyzed. This topology, called coconvextopology, agrees with the usually weak topology in Banach spaces. An example of a CAT (0)-spacewith weak topology which is not Hausdorff is given.In the end existence and uniqueness of generalized barycenters is shown, an application to isometric groupactions is given and a Banach-Saks property is proved.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Uniformly Convex Metric Spaces ; volume:2 ; number:1 ; year:2014 ; extent:22
Analysis and geometry in metric spaces ; 2, Heft 1 (2014) (gesamt 22)

Creator
Kell, Martin

DOI
10.2478/agms-2014-0015
URN
urn:nbn:de:101:1-2024041116451216211562
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:57 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Kell, Martin

Other Objects (12)