Uniformly Convex Metric Spaces
Abstract: In this paper the theory of uniformly convex metric spaces is developed. These spaces exhibit ageneralized convexity of the metric from a fixed point. Using a (nearly) uniform convexity property a simpleproof of reflexivity is presented and a weak topology of such spaces is analyzed. This topology, called coconvextopology, agrees with the usually weak topology in Banach spaces. An example of a CAT (0)-spacewith weak topology which is not Hausdorff is given.In the end existence and uniqueness of generalized barycenters is shown, an application to isometric groupactions is given and a Banach-Saks property is proved.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Uniformly Convex Metric Spaces ; volume:2 ; number:1 ; year:2014 ; extent:22
Analysis and geometry in metric spaces ; 2, Heft 1 (2014) (gesamt 22)
- Creator
-
Kell, Martin
- DOI
-
10.2478/agms-2014-0015
- URN
-
urn:nbn:de:101:1-2024041116451216211562
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:57 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Kell, Martin