Arbeitspapier

Partial identification and inference in duration models with endogenous censoring

This paper studies identification and inference in transformation models with endogenous censoring. Many kinds of duration models, such as the accelerated failure time model, proportional hazard model, and mixed proportional hazard model, can be viewed as transformation models. I allow the censoring of duration outcome to be arbitrarily correlated with observed covariates and unobserved heterogeneity. I impose no parametric restrictions on the transformation function or the distribution function of the unobserved heterogeneity. In this setting, I partially identify the regression parameters and the transformation function, which are characterized by conditional moment inequalities of U-statistics. I provide an inference method for them by constructing an inference approach for the conditional moment inequality models of U-statistics. I apply the proposed inference method to evaluate the effect of heart transplants on patients' survival time using data from the Stanford Heart Transplant Study.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP8/20

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
Duration Analysis; Optimal Timing Strategies
Thema
Partial identification
duration models
transformation models
censoring
conditional moment inequality

Ereignis
Geistige Schöpfung
(wer)
Sakaguchi, Shosei
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2020

DOI
doi:10.1920/wp.cem.2020.820
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Sakaguchi, Shosei
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2020

Ähnliche Objekte (12)