Artikel

A third-order weighted essentially non-oscillatory scheme in optimal control problems governed by nonlinear hyperbolic conservation laws

The weighted essentially non-oscillatory (WENO) methods are popular and effective spatial discretization methods for nonlinear hyperbolic partial differential equations. Although these methods are formally first-order accurate when a shock is present, they still have uniform high-order accuracy right up to the shock location. In this paper, we propose a novel third-order numerical method for solving optimal control problems subject to scalar nonlinear hyperbolic conservation laws. It is based on the first-disretize-then-optimize approach and combines a discrete adjoint WENO scheme of third order with the classical strong stability preserving three-stage third-order Runge–Kutta method SSPRK3. We analyze its approximation properties and apply it to optimal control problems of tracking-type with non-smooth target states. Comparisons to common first-order methods such as the Lax–Friedrichs and Engquist–Osher method show its great potential to achieve a higher accuracy along with good resolution around discontinuities.

Sprache
Englisch

Erschienen in
Journal: Computational Optimization and Applications ; ISSN: 1573-2894 ; Volume: 80 ; Year: 2021 ; Issue: 1 ; Pages: 301-320 ; New York, NY: Springer US

Klassifikation
Mathematik
Thema
Nonlinear optimal control
Discrete adjoints
Hyperbolic conservation laws
WENO schemes
Strong stability preserving Runge–Kutta methods

Ereignis
Geistige Schöpfung
(wer)
Frenzel, David
Lang, Jens
Ereignis
Veröffentlichung
(wer)
Springer US
(wo)
New York, NY
(wann)
2021

DOI
doi:10.1007/s10589-021-00295-2
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Frenzel, David
  • Lang, Jens
  • Springer US

Entstanden

  • 2021

Ähnliche Objekte (12)