Artikel
A third-order weighted essentially non-oscillatory scheme in optimal control problems governed by nonlinear hyperbolic conservation laws
The weighted essentially non-oscillatory (WENO) methods are popular and effective spatial discretization methods for nonlinear hyperbolic partial differential equations. Although these methods are formally first-order accurate when a shock is present, they still have uniform high-order accuracy right up to the shock location. In this paper, we propose a novel third-order numerical method for solving optimal control problems subject to scalar nonlinear hyperbolic conservation laws. It is based on the first-disretize-then-optimize approach and combines a discrete adjoint WENO scheme of third order with the classical strong stability preserving three-stage third-order Runge–Kutta method SSPRK3. We analyze its approximation properties and apply it to optimal control problems of tracking-type with non-smooth target states. Comparisons to common first-order methods such as the Lax–Friedrichs and Engquist–Osher method show its great potential to achieve a higher accuracy along with good resolution around discontinuities.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Computational Optimization and Applications ; ISSN: 1573-2894 ; Volume: 80 ; Year: 2021 ; Issue: 1 ; Pages: 301-320 ; New York, NY: Springer US
- Klassifikation
-
Mathematik
- Thema
-
Nonlinear optimal control
Discrete adjoints
Hyperbolic conservation laws
WENO schemes
Strong stability preserving Runge–Kutta methods
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Frenzel, David
Lang, Jens
- Ereignis
-
Veröffentlichung
- (wer)
-
Springer US
- (wo)
-
New York, NY
- (wann)
-
2021
- DOI
-
doi:10.1007/s10589-021-00295-2
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Frenzel, David
- Lang, Jens
- Springer US
Entstanden
- 2021