Artikel
Forecast accuracy matters for hurricane damage
I analyze damage from hurricane strikes on the United States since 1955. Using machine learning methods to select the most important drivers for damage, I show that large errors in a hurricane's predicted landfall location result in higher damage. This relationship holds across a wide range of model specifications and when controlling for ex-ante uncertainty and potential endogeneity. Using a counterfactual exercise I find that the cumulative reduction in damage from forecast improvements since 1970 is about $82 billion, which exceeds the U.S. government's spending on the forecasts and private willingness to pay for them.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 8 ; Year: 2020 ; Issue: 2 ; Pages: 1-24 ; Basel: MDPI
- Classification
-
Wirtschaft
- Subject
-
adaptation
model selection
natural disasters
uncertainty
- Event
-
Geistige Schöpfung
- (who)
-
Martinez, Andrew B.
- Event
-
Veröffentlichung
- (who)
-
MDPI
- (where)
-
Basel
- (when)
-
2020
- DOI
-
doi:10.3390/econometrics8020018
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Martinez, Andrew B.
- MDPI
Time of origin
- 2020