Artikel

Forecast accuracy matters for hurricane damage

I analyze damage from hurricane strikes on the United States since 1955. Using machine learning methods to select the most important drivers for damage, I show that large errors in a hurricane's predicted landfall location result in higher damage. This relationship holds across a wide range of model specifications and when controlling for ex-ante uncertainty and potential endogeneity. Using a counterfactual exercise I find that the cumulative reduction in damage from forecast improvements since 1970 is about $82 billion, which exceeds the U.S. government's spending on the forecasts and private willingness to pay for them.

Language
Englisch

Bibliographic citation
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 8 ; Year: 2020 ; Issue: 2 ; Pages: 1-24 ; Basel: MDPI

Classification
Wirtschaft
Subject
adaptation
model selection
natural disasters
uncertainty

Event
Geistige Schöpfung
(who)
Martinez, Andrew B.
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2020

DOI
doi:10.3390/econometrics8020018
Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Martinez, Andrew B.
  • MDPI

Time of origin

  • 2020

Other Objects (12)