Arbeitspapier
Macroeconomic Forecast Accuracy in a Data-Rich Environment
We compare the performance of six classes of models at forecasting di↵erent types of economic series in an extensive pseudo out-of-sample exercise. Our findings can be summarized in a few points: (i) Regularized Data-Rich Model Averaging techniques are hard to beat in general and are the best to forecast real variables. Simulations results show that this robust performance is attributable to the combination of sparsity/regularization with model averaging. (ii) The ARMA(1,1) model emerges as the best to forecast inflation growth, except during recessions. (iii) SP500 returns are predictable by data-rich models and model averaging techniques, especially during recessions. Also, factor models have significant predictive power for the signs of future returns. (iv) The cross-sectional dispersion of out-of-sample point forecasts is a good predictor of macroeconomic uncertainty. (v) The forecast accuracy and the optimal structure of forecasting equations are quite unstable over time.
- Language
-
Englisch
- Bibliographic citation
-
Series: Document de travail ; No. 2017-02
- Classification
-
Wirtschaft
Large Data Sets: Modeling and Analysis
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
General Aggregative Models: Forecasting and Simulation: Models and Applications
- Subject
-
Data-Rich Models
Factor Models
Forecasting
Model Averaging
Sparse Models
Regularization
- Event
-
Geistige Schöpfung
- (who)
-
Kotchoni, Rachidi
Leroux, Maxime
Stevanovic, Dalibor
- Event
-
Veröffentlichung
- (who)
-
Université du Québec à Montréal, École des sciences de la gestion (ESG UQAM), Département des sciences économiques
- (where)
-
Montréal
- (when)
-
2017
- Handle
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Kotchoni, Rachidi
- Leroux, Maxime
- Stevanovic, Dalibor
- Université du Québec à Montréal, École des sciences de la gestion (ESG UQAM), Département des sciences économiques
Time of origin
- 2017