Cluster‐based network model for drag reduction mechanisms of an actuated turbulent boundary layer

Abstract: We introduce a novel data‐driven reduced‐order modeling approach, a Cluster‐Based Network Model (CBNM). Starting point is a set of time‐resolved snapshots associated with one or multiple control laws. These snapshots are coarse‐grained into dozens of centroids using k‐means++ clustering. The dynamics is modelled in a network between these centroids comprising the transition probability and corresponding transit time. The transition parameters depend on the control law. CBNM is successfully applied to an actuated turbulent boundary layer flow. The results show that CBNM is an attractive alternative to POD models as the model is human interpretable and dynamically robust by construction.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Cluster‐based network model for drag reduction mechanisms of an actuated turbulent boundary layer ; volume:19 ; number:1 ; year:2019 ; extent:2
Proceedings in applied mathematics and mechanics ; 19, Heft 1 (2019) (gesamt 2)

Creator
Fernex, Daniel
Semaan, Richard
Albers, Marian
Meysonnat, Pascal S.
Schröder, Wolfgang
Ishar, Rishabh
Kaiser, Eurika
Noack, Bernd R.

DOI
10.1002/pamm.201900219
URN
urn:nbn:de:101:1-2022072207543427472530
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:25 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Fernex, Daniel
  • Semaan, Richard
  • Albers, Marian
  • Meysonnat, Pascal S.
  • Schröder, Wolfgang
  • Ishar, Rishabh
  • Kaiser, Eurika
  • Noack, Bernd R.

Other Objects (12)