Surrogate‐based optimization for active drag reduction of turbulent boundary layer flows

Abstract: Two surrogate‐based optimization strategies using support vector regression (SVR) and Gaussian process regression (GPR) as surrogates are investigated to guide the design of actuation parameters for active drag reduction techniques in turbulent boundary layer flows encountered at civil airplanes in cruise flight and high‐speed trains. As an approximation, the turbulent flow over a flat plate subjected to spanwise traveling transversal sinusoidal surface waves is simulated by wall‐resolved large‐eddy simulations (LESs). These simulation data are used to model the dependence of the objective drag reduction on the actuation parameters, that is, the optimization variables. In this work, the previous purely exploitative approach of SVR‐based ridgeline optimization is extended to GPR‐based Bayesian optimization to further automate the simulation‐driven tuning of the actuation parameters.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Surrogate‐based optimization for active drag reduction of turbulent boundary layer flows ; day:06 ; month:11 ; year:2023 ; extent:8
Proceedings in applied mathematics and mechanics ; (06.11.2023) (gesamt 8)

Urheber
Hübenthal, Fabian
Albers, Marian
Meinke, Matthias
Schröder, Wolfgang

DOI
10.1002/pamm.202300190
URN
urn:nbn:de:101:1-2023110614293773059708
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:58 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)