Surrogate‐based optimization for active drag reduction of turbulent boundary layer flows

Abstract: Two surrogate‐based optimization strategies using support vector regression (SVR) and Gaussian process regression (GPR) as surrogates are investigated to guide the design of actuation parameters for active drag reduction techniques in turbulent boundary layer flows encountered at civil airplanes in cruise flight and high‐speed trains. As an approximation, the turbulent flow over a flat plate subjected to spanwise traveling transversal sinusoidal surface waves is simulated by wall‐resolved large‐eddy simulations (LESs). These simulation data are used to model the dependence of the objective drag reduction on the actuation parameters, that is, the optimization variables. In this work, the previous purely exploitative approach of SVR‐based ridgeline optimization is extended to GPR‐based Bayesian optimization to further automate the simulation‐driven tuning of the actuation parameters.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Surrogate‐based optimization for active drag reduction of turbulent boundary layer flows ; day:06 ; month:11 ; year:2023 ; extent:8
Proceedings in applied mathematics and mechanics ; (06.11.2023) (gesamt 8)

Creator
Hübenthal, Fabian
Albers, Marian
Meinke, Matthias
Schröder, Wolfgang

DOI
10.1002/pamm.202300190
URN
urn:nbn:de:101:1-2023110614293773059708
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:58 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)