Regularized regression when covariates are linked on a network: the 3CoSE algorithm
Abstract: Covariates in regressions may be linked to each other on a network. Knowledge of the network structure can be incorporated into regularized regression settings via a network penalty term. However, when it is unknown whether the connection signs in the network are positive (connected covariates reinforce each other) or negative (connected covariates repress each other), the connection signs have to be estimated jointly with the covariate coefficients. This can be done with an algorithm iterating a connection sign estimation step and a covariate coefficient estimation step. We develop such an algorithm, called 3CoSE, and show detailed simulation results and an application forecasting event times. The algorithm performs well in a variety of settings. We also briefly describe the publicly available R-package developed for this purpose
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Journal of applied statistics. - 50, 3 (2023) , 535-554, ISSN: 1360-0532
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2021
- Urheber
- DOI
-
10.1080/02664763.2021.1982878
- URN
-
urn:nbn:de:bsz:25-freidok-2222369
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
25.03.2025, 13:44 MEZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Weber, Karl Matthias
- Striaukas, Jonas
- Schumacher, Martin
- Binder, Harald
- Universität
Entstanden
- 2021