Engineering Heart Valve Interfaces Using Melt Electrowriting: Biomimetic Design Strategies from Multi‐Modal Imaging

Abstract: Interfaces within biological tissues not only connect different regions but also contribute to the overall functionality of the tissue. This is especially true in the case of the aortic heart valve. Here, melt electrowriting (MEW) is used to engineer complex, user‐defined, interfaces for heart valve scaffolds. First, a multi‐modal imaging investigation into the interfacial regions of the valve reveals differences in collagen orientation, density, and recruitment in previously unexplored regions including the commissure and inter‐leaflet triangle. Overlapping, suturing, and continuous printing methods for interfacing MEW scaffolds are then investigated for their morphological, tensile, and flexural properties, demonstrating the superior performance of continuous interfaces. G‐codes for MEW scaffolds with complex interfaces are designed and generated using a novel software and graphical user interface. Finally, a singular MEW scaffold for the interfacial region of the aortic heart valve is presented incorporating continuous interfaces, gradient porosities, variable layer numbers across regions, and tailored fiber orientations inspired by the collagen distribution and orientation from the multi‐modal imaging study. The scaffold exhibits similar yield strain, hysteresis, and relaxation behavior to porcine heart valves. This work demonstrates the ability of a bioinspired approach for MEW scaffold design to address the functional complexity of biological tissues.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Engineering Heart Valve Interfaces Using Melt Electrowriting: Biomimetic Design Strategies from Multi‐Modal Imaging ; day:30 ; month:11 ; year:2022 ; extent:17
Advanced healthcare materials ; (30.11.2022) (gesamt 17)

Creator
Vernon, Michael J.
Lu, Jason
Padman, Benjamin
Lamb, Christopher
Kent, Ross
Mela, Petra
Doyle, Barry
Ihdayhid, Abdul Rahman
Jansen, Shirley
Dilley, Rodney J.
De‐Juan‐Pardo, Elena M.

DOI
10.1002/adhm.202201028
URN
urn:nbn:de:101:1-2022120114190268546856
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:27 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Vernon, Michael J.
  • Lu, Jason
  • Padman, Benjamin
  • Lamb, Christopher
  • Kent, Ross
  • Mela, Petra
  • Doyle, Barry
  • Ihdayhid, Abdul Rahman
  • Jansen, Shirley
  • Dilley, Rodney J.
  • De‐Juan‐Pardo, Elena M.

Other Objects (12)