Arbeitspapier
Multiple point hypothesis test problems and effective numbers of tests
We consider a special class of multiple testing problems, consisting of M simultaneous point hypothesis tests in local statistical experiments. Under certain structural assumptions the global hypothesis contains exactly one element v* (say), and v* is least favourable parameter configuration with respect to the family-wise error rate (FWER) of multiple single-step tests, meaning that the FWER of such tests becomes largest under v*. Furthermore, it turns out that concepts of positive dependence are applicable to the involved test statistics in many practically relevant cases, in particular, for multivariate normal and chi-squared distributions. Altogether, this allows for a relaxation of the adjustment for multiplicity by making use of the intrinsic correlation structure in the data. We represent product-type bounds for the FWER in terms of a relaxed éSidák-type correction of the overall significance level and compute effective numbers of tests. Our methodology can be applied to a variety of simultaneous location parameter problems, as in analysis of variance models or in the context of simultaneous categorical data analysis. For example, simultaneous chisquare tests for association of categorical features are ubiquitous in genomewide association studies. In this type of model, Moskvina and Schmidt (2008) gave a formula for an effective number of tests utilizing Pearson's haplotypic correlation coefficient as a linkage disequilibrium measure. Their result follows as a corollary from our general theory and will be generalized.
- Sprache
-
Englisch
- Erschienen in
-
Series: SFB 649 Discussion Paper ; No. 2012-041
- Klassifikation
-
Wirtschaft
Hypothesis Testing: General
Operations Research; Statistical Decision Theory
- Thema
-
Monotonically sub-Markovian
multiple test
multiplicity correction
multivariate chi-squared distribution
positive orthant dependence
Sidák correction
single-step test
subset pivotality
Statistischer Test
Theorie
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Dickhaus, Thorsten
Stange, Jens
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (wo)
-
Berlin
- (wann)
-
2012
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Dickhaus, Thorsten
- Stange, Jens
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Entstanden
- 2012