Arbeitspapier

A nonparametric test of the leverage hypothesis

The so-called leverage hypothesis is that negative shocks to prices/returns affect volatility more than equal positive shocks. Whether this is attributable to changing financial leverage is still subject to dispute but the terminology is in wide use. There are many tests of the leverage hypothesis using discrete time data. These typically involve fitting of a general parametric or semiparametric model to conditional volatility and then testing the implied restrictions on parameters or curves. We propose an alternative way of testing this hypothesis using realized volatility as an alternative direct nonparametric measure. Our null hypothesis is of conditional distributional dominance and so is much stronger than the usual hypotheses considered previously. We implement our test on a number of stock return datasets using intraday data over a long span. We find powerful evidence in favour of our hypothesis.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP24/12

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Statistical Simulation Methods: General
Thema
Distribution function
Leverage Effect
Gaussian Process

Ereignis
Geistige Schöpfung
(wer)
Linton, Oliver
Whang, Yoon-Jae
Yen, Yu-Min
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2012

DOI
doi:10.1920/wp.cem.2012.2412
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Linton, Oliver
  • Whang, Yoon-Jae
  • Yen, Yu-Min
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2012

Ähnliche Objekte (12)