Arbeitspapier
On the Optimal Policy for Deterministic and Exponential Polling Systems
In this paper, we consider deterministic (both fluid and discrete) polling systems with N queues with infinite buffers and we show how to compute the best polling sequence (minimizing the average total workload). With two queues, the best polling sequence is always periodic when the system is stable and forms a regular sequence. The fraction of time spent by the server in the first queue is highly non continuous in the parameters of the system (arrival rate and service rate) and shows a fractal behavior. Convexity properties are shown in Appendix as well as a generalization of the computations to the stochastic exponential case.
- Language
-
Englisch
- Bibliographic citation
-
Series: Tinbergen Institute Discussion Paper ; No. 05-066/4
- Classification
-
Wirtschaft
Mathematical Methods; Programming Models; Mathematical and Simulation Modeling: General
Computational Techniques; Simulation Modeling
Miscellaneous Mathematical Tools
- Subject
-
Polling systems
regular sequences
multimodularity
optimal control
Scheduling-Verfahren
Warteschlangentheorie
Theorie
- Event
-
Geistige Schöpfung
- (who)
-
Gaujal, Bruno
Hordijk, Arie
van der Laan, Dinard
- Event
-
Veröffentlichung
- (who)
-
Tinbergen Institute
- (where)
-
Amsterdam and Rotterdam
- (when)
-
2005
- Handle
- Last update
-
10.03.2025, 11:41 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Gaujal, Bruno
- Hordijk, Arie
- van der Laan, Dinard
- Tinbergen Institute
Time of origin
- 2005