Arbeitspapier

On the Optimal Policy for Deterministic and Exponential Polling Systems

In this paper, we consider deterministic (both fluid and discrete) polling systems with N queues with infinite buffers and we show how to compute the best polling sequence (minimizing the average total workload). With two queues, the best polling sequence is always periodic when the system is stable and forms a regular sequence. The fraction of time spent by the server in the first queue is highly non continuous in the parameters of the system (arrival rate and service rate) and shows a fractal behavior. Convexity properties are shown in Appendix as well as a generalization of the computations to the stochastic exponential case.

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. 05-066/4

Classification
Wirtschaft
Mathematical Methods; Programming Models; Mathematical and Simulation Modeling: General
Computational Techniques; Simulation Modeling
Miscellaneous Mathematical Tools
Subject
Polling systems
regular sequences
multimodularity
optimal control
Scheduling-Verfahren
Warteschlangentheorie
Theorie

Event
Geistige Schöpfung
(who)
Gaujal, Bruno
Hordijk, Arie
van der Laan, Dinard
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
2005

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Gaujal, Bruno
  • Hordijk, Arie
  • van der Laan, Dinard
  • Tinbergen Institute

Time of origin

  • 2005

Other Objects (12)