Artikel

Maximum likelihood estimation of stock volatility using jump-diffusion models

We investigate whether there are systematic jumps in stock prices using the Brownian motion approach and Poisson processes to test diffusion and jump risk, respectively, on Johannesburg Stock Exchange and whether these jumps cause asset return volatility. Using stock market data from June 2002 to September 2016, we hypothesize that stocks with high positive (negative) slopes are more likely to have large positive (negative) jumps in the future. As such, we expect to observe salient properties of volatility on listed stocks. We also conjecture that it is valid to use maximum likelihood procedures in estimating jumps in stocks.

Language
Englisch

Bibliographic citation
Journal: Cogent Economics & Finance ; ISSN: 2332-2039 ; Volume: 7 ; Year: 2019 ; Issue: 1 ; Pages: 1-17 ; Abingdon: Taylor & Francis

Classification
Wirtschaft
Hypothesis Testing: General
Methodological Issues: General
Subject
Merton jump diffusion model
Black scholes volatility (IV) curves
Weiner process
maximum likelihood estimation

Event
Geistige Schöpfung
(who)
Chekenya, Nixon S.
Event
Veröffentlichung
(who)
Taylor & Francis
(where)
Abingdon
(when)
2019

DOI
doi:10.1080/23322039.2019.1582318
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Chekenya, Nixon S.
  • Taylor & Francis

Time of origin

  • 2019

Other Objects (12)