Artikel
Maximum entropy evaluation of asymptotic hedging error under a generalised jump-diffusion model
In this paper we propose a maximum entropy estimator for the asymptotic distribution of the hedging error for options. Perfect replication of financial derivatives is not possible, due to market incompleteness and discrete-time hedging. We derive the asymptotic hedging error for options under a generalised jump-diffusion model with kernel bias, which nests a number of very important processes in finance. We then obtain an estimation for the distribution of hedging error by maximising Shannon's entropy subject to a set of moment constraints, which in turn yields the value-at-risk and expected shortfall of the hedging error. The significance of this approach lies in the fact that the maximum entropy estimator allows us to obtain a consistent estimate of the asymptotic distribution of hedging error, despite the non-normality of the underlying distribution of returns.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 14 ; Year: 2021 ; Issue: 3 ; Pages: 1-19 ; Basel: MDPI
- Klassifikation
-
Wirtschaft
Estimation: General
Model Construction and Estimation
Contingent Pricing; Futures Pricing; option pricing
- Thema
-
expected shortfall
value-at-risk
asymptotic hedging error
esscher transform
generalised jump
kernel biased
maximum entropy density
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Fard, Farzad Alavi
Doko Tchatoka, Firmin
Sriananthakumar, Sivagowry
- Ereignis
-
Veröffentlichung
- (wer)
-
MDPI
- (wo)
-
Basel
- (wann)
-
2021
- DOI
-
doi:10.3390/jrfm14030097
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Fard, Farzad Alavi
- Doko Tchatoka, Firmin
- Sriananthakumar, Sivagowry
- MDPI
Entstanden
- 2021