Artikel

Maximum entropy evaluation of asymptotic hedging error under a generalised jump-diffusion model

In this paper we propose a maximum entropy estimator for the asymptotic distribution of the hedging error for options. Perfect replication of financial derivatives is not possible, due to market incompleteness and discrete-time hedging. We derive the asymptotic hedging error for options under a generalised jump-diffusion model with kernel bias, which nests a number of very important processes in finance. We then obtain an estimation for the distribution of hedging error by maximising Shannon's entropy subject to a set of moment constraints, which in turn yields the value-at-risk and expected shortfall of the hedging error. The significance of this approach lies in the fact that the maximum entropy estimator allows us to obtain a consistent estimate of the asymptotic distribution of hedging error, despite the non-normality of the underlying distribution of returns.

Language
Englisch

Bibliographic citation
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 14 ; Year: 2021 ; Issue: 3 ; Pages: 1-19 ; Basel: MDPI

Classification
Wirtschaft
Estimation: General
Model Construction and Estimation
Contingent Pricing; Futures Pricing; option pricing
Subject
expected shortfall
value-at-risk
asymptotic hedging error
esscher transform
generalised jump
kernel biased
maximum entropy density

Event
Geistige Schöpfung
(who)
Fard, Farzad Alavi
Doko Tchatoka, Firmin
Sriananthakumar, Sivagowry
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2021

DOI
doi:10.3390/jrfm14030097
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Fard, Farzad Alavi
  • Doko Tchatoka, Firmin
  • Sriananthakumar, Sivagowry
  • MDPI

Time of origin

  • 2021

Other Objects (12)