Block‐Copolymer‐Architected Materials in Electrochemical Energy Storage

The multiscale architecture of electrochemical energy storage (EES) materials critically impacts device performance, including energy, power, and durability. The pore space of nano‐ to macrostructured electrodes determines mass transport within the electrolyte and defines the effective energy density. The dimensions of the active charge‐storing materials can increase stability during cycling by accommodating strains from electrochemical–mechanical coupling while also defining surface area that increases capacitive charge storage, decreases charge‐transfer resistance, but also leads to low efficiency and degradation from interfacial reactions. Thus, elucidating and developing a fundamental understanding of these correlations requires materials with precisely tunable nanoscale architectures. Herein, approaches that take advantage of the nanoscale control offered by block copolymer (BCP) self‐assembly are reviewed and insights gained from associated nanoscale phenomena observed in EES are highlighted. Systematic studies that use custom‐tailored BCPs to reveal fundamental nanostructure–property–performance relationships are emphasized. Importantly, most reports of nanostructured materials utilize low loadings and thin electrodes and results represent mass transfer limitations at the particle scale. However, as cell‐level performance involves mass transport over 10–100s of micrometers, recently emerging BCP‐based processes are further highlighted, leading to hierarchical meso/macroporous materials needed for creating multiscale structure–performance relationships and next‐generation energy storage material architectures.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Block‐Copolymer‐Architected Materials in Electrochemical Energy Storage ; day:14 ; month:11 ; year:2023 ; extent:39
Small science ; (14.11.2023) (gesamt 39)

Urheber
Werner, Jörg G.
Li, Yuanzhi
Wiesner, Ulrich

DOI
10.1002/smsc.202300074
URN
urn:nbn:de:101:1-2023111514123551045119
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:53 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Werner, Jörg G.
  • Li, Yuanzhi
  • Wiesner, Ulrich

Ähnliche Objekte (12)