Homogenization of Maximal Monotone Vector Fields via Selfdual Variational Calculus

Abstract: We use the theory of selfdual Lagrangians to give a variational approach to the homogenization of equations in divergence form, that are driven by a periodic family of maximal monotone vector fields. The approach has the advantage of using Γ-convergence methods for corresponding functionals just as in the classical case of convex potentials, as opposed to the graph convergence methods used in the absence of potentials. A new variational formulation for the homogenized equation is also given.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Homogenization of Maximal Monotone Vector Fields via Selfdual Variational Calculus ; volume:11 ; number:2 ; year:2011 ; pages:323-360 ; extent:38
Advanced nonlinear studies ; 11, Heft 2 (2011), 323-360 (gesamt 38)

Creator
Ghoussoub, Nassif
Moameni, Abbas
Sáiz, Ramón Zárate

DOI
10.1515/ans-2011-0206
URN
urn:nbn:de:101:1-2405021701065.546448459244
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:57 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Ghoussoub, Nassif
  • Moameni, Abbas
  • Sáiz, Ramón Zárate

Other Objects (12)