Homogenization of Maximal Monotone Vector Fields via Selfdual Variational Calculus
Abstract: We use the theory of selfdual Lagrangians to give a variational approach to the homogenization of equations in divergence form, that are driven by a periodic family of maximal monotone vector fields. The approach has the advantage of using Γ-convergence methods for corresponding functionals just as in the classical case of convex potentials, as opposed to the graph convergence methods used in the absence of potentials. A new variational formulation for the homogenized equation is also given.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Homogenization of Maximal Monotone Vector Fields via Selfdual Variational Calculus ; volume:11 ; number:2 ; year:2011 ; pages:323-360 ; extent:38
Advanced nonlinear studies ; 11, Heft 2 (2011), 323-360 (gesamt 38)
- Creator
-
Ghoussoub, Nassif
Moameni, Abbas
Sáiz, Ramón Zárate
- DOI
-
10.1515/ans-2011-0206
- URN
-
urn:nbn:de:101:1-2405021701065.546448459244
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:57 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Ghoussoub, Nassif
- Moameni, Abbas
- Sáiz, Ramón Zárate