On variational nonlinear equations with monotone operators

Abstract: Using monotonicity methods and some variational argument we consider nonlinear problems which involve monotone potential mappings satisfying condition (S) and their strongly continuous perturbations. We investigate when functional whose minimum is obtained by a direct method of the calculus of variations satisfies the Palais-Smale condition, relate minimizing sequence and Galerkin approximaitons when both exist, then provide structure conditions on the derivative of the action functional under which bounded Palais-Smale sequences are convergent. Finally, we make some comment concerning the convergence of Palais-Smale sequence obtained in the mountain pass theorem due to Rabier.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
On variational nonlinear equations with monotone operators ; volume:10 ; number:1 ; year:2020 ; pages:289-300 ; extent:12
Advances in nonlinear analysis ; 10, Heft 1 (2020), 289-300 (gesamt 12)

Urheber
Galewski, Marek

DOI
10.1515/anona-2020-0102
URN
urn:nbn:de:101:1-2405021558574.681565585440
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:45 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Galewski, Marek

Ähnliche Objekte (12)