The utility of social and topical factors in anticipating repliers in Twitter conversations
Abstract: Anticipating repliers in online conversations is a fundamental challenge for computer mediated communication systems which aim to make textual, audio and/or video communication as natural as face to face communication. The massive amounts of data that social media generates has facilitated the study of online conversations on a scale unimaginable a few years ago. In this work we use data from Twitter to explore the predictability of repliers, and investigate the factors which influence who will reply to a message. Our results suggest that social factors, which describe the strength of relations between users, are more useful than topical factors. This indicates that Twitter users' reply behavior is more impacted by social relations than by topics. Finally, we show that a binary classification model, which differentiates between users who will and users who will not reply to a certain message, may achieve an F1-score of 0.74 when using social features
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource, 376-385 S.
- Sprache
-
Englisch
- Anmerkungen
-
Veröffentlichungsversion
begutachtet (peer reviewed)
In: Proceedings of the 5th ACM Web Science Conference 2013. 2013. S. 376-385. ISBN 978-1-4503-1889-1
- Ereignis
-
Veröffentlichung
- (wo)
-
New York
- (wer)
-
ACM
- (wann)
-
2013
- Ereignis
-
Veröffentlichung
- (wo)
-
Mannheim
- (wer)
-
SSOAR - Social Science Open Access Repository
- (wann)
-
2013
- Urheber
-
Schantl, Johannes
Kaiser, Rene
Wagner, Claudia
Strohmaier, Markus
- DOI
-
10.1145/2464464.2464481
- URN
-
urn:nbn:de:0168-ssoar-66083-7
- Rechteinformation
-
Open Access unbekannt; Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:24 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Schantl, Johannes
- Kaiser, Rene
- Wagner, Claudia
- Strohmaier, Markus
- ACM
- SSOAR - Social Science Open Access Repository
Entstanden
- 2013