Arbeitspapier

Indirect inference and small sample bias - Some recent results

Macroeconomic researchers use a variety of estimators to parameterise their models empirically. One such is FIML; another is a form of indirect inference we term "informal" under which data features are "targeted" by the model -i.e. parameters are chosen so that model-simulated features replicate the data features closely. In this paper we show, based on Monte Carlo experiments, that in the small samples prevalent in macro data, both these methods produce high bias, while formal indirect inference, in which the joint probability of the data- generated auxiliary model is maximised under the model simulated distribution, produces low bias. We also show that FII gets this low bias from its high power in rejecting misspecified models, which comes in turn from the fact that this distribution is restricted by the modelspecified parameters, so sharply distinguishing it from rival misspecified models.

Language
Englisch

Bibliographic citation
Series: Cardiff Economics Working Papers ; No. E2023/15

Classification
Wirtschaft
Hypothesis Testing: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Evaluation, Validation, and Selection
Subject
Moments
Indirect Inference

Event
Geistige Schöpfung
(who)
Meenagh, David
Minford, Patrick
Xu, Yongdeng
Event
Veröffentlichung
(who)
Cardiff University, Cardiff Business School
(where)
Cardiff
(when)
2023

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Meenagh, David
  • Minford, Patrick
  • Xu, Yongdeng
  • Cardiff University, Cardiff Business School

Time of origin

  • 2023

Other Objects (12)