Artikel

An approach to increasing forecast‐combination accuracy through VAR error modeling

We consider a situation in which the forecaster has available M individual forecasts of a univariate target variable. We propose a 3-step procedure designed to exploit the interrelationships among the M forecast-error series (estimated from a large time-varying parameter VAR model of the errors, using past observations) with the aim of obtaining more accurate predictions of future forecast errors. The refined future forecast-error predictions are then used to obtain M new individual forecasts that are adapted to the information from the estimated VAR. The adapted M individual forecasts are ultimately combined and any potential accuracy gains from the adapted combination forecasts analyzed. We evaluate our approach in an out-of-sample forecasting analysis, using a well-established 7-country data set on output growth. Our 3-step procedure yields substantial accuracy gains (in terms of loss reductions of up to 18%) for the simple average and three time-varying-parameter combination forecasts.

Sprache
Englisch

Erschienen in
Journal: Journal of Forecasting ; ISSN: 1099-131X ; Volume: 40 ; Year: 2021 ; Issue: 4 ; Pages: 686-699 ; Hoboken, NJ: Wiley

Thema
Bayesian VAR estimation
dynamic model averaging
forecast combinations
forgetting factors
large time‐varying parameter VARs
state‐space model

Ereignis
Geistige Schöpfung
(wer)
Weigt, Till
Wilfling, Bernd
Ereignis
Veröffentlichung
(wer)
Wiley
(wo)
Hoboken, NJ
(wann)
2021

DOI
doi:10.1002/for.2733
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Weigt, Till
  • Wilfling, Bernd
  • Wiley

Entstanden

  • 2021

Ähnliche Objekte (12)