Arbeitspapier

Adaptive inference in heteroskedastic fractional time series models

We consider estimation and inference in fractionally integrated time series models driven by shocks which can display conditional and unconditional heteroskedasticity of unknown form. Although the standard conditional sum-of-squares (CSS) estimator remains consistent and asymptotically normal in such cases, unconditional heteroskedasticity inflates its variance matrix by a scalar quantity, lambda>1, thereby inducing a loss in efficiency relative to the unconditionally homoskedastic case, lambda=1. We propose an adaptive version of the CSS estimator, based on non-parametric kernel-based estimation of the unconditional variance process. This eliminates the factor lambda from the variance matrix, thereby delivering the same asymptotic efficiency as that attained by the standard CSS estimator in the unconditionally homoskedastic case and, hence, asymptotic efficiency under Gaussianity. The asymptotic variance matrices of both the standard and adaptive CSS estimators depend on any conditional heteroskedasticity and/or weak parametric autocorrelation present in the shocks. Consequently, asymptotically pivotal inference can be achieved through the development of confidence regions or hypothesis tests using either heteroskedasticity robust standard errors and/or a wild bootstrap. Monte Carlo simulations and empirical applications are included to illustrate the practical usefulness of the methods proposed.

Sprache
Englisch

Erschienen in
Series: Queen's Economics Department Working Paper ; No. 1390

Klassifikation
Wirtschaft
Hypothesis Testing: General
Estimation: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Thema
adaptive estimation
conditional sum-of-squares
fractional integration
heteroskedasticity
quasi-maximum likelihood estimation
wild bootstrap

Ereignis
Geistige Schöpfung
(wer)
Cavaliere, Giuseppe
Nielsen, Morten Ørregaard
Taylor, A.M. Robert
Ereignis
Veröffentlichung
(wer)
Queen's University, Department of Economics
(wo)
Kingston (Ontario)
(wann)
2017

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Cavaliere, Giuseppe
  • Nielsen, Morten Ørregaard
  • Taylor, A.M. Robert
  • Queen's University, Department of Economics

Entstanden

  • 2017

Ähnliche Objekte (12)