Arbeitspapier

Sieve inference on semi-nonparametric time series models

The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we establish a surprising result that the asymptotic variances of plug-in sieve M estimators of irregular (i.e., slower than root-T estimable) functionals do not depend on temporal dependence. Nevertheless, ignoring the temporal dependence in small samples may not lead to accurate inference. We then propose an easy-to-compute and more accurate inference procedure based on a pre-asymptotic sieve variance estimator that captures temporal dependence. We construct a pre-asymptotic Wald statistic using an orthonormal series long run variance (OS-LRV) estimator. For sieve M estimators of both regular (i.e., root-T estimable) and irregular functionals, a scaled pre-asymptotic Wald statistic is asymptotically F distributed when the series number of terms in the OS-LRV estimator is held fixed. Simulations indicate that our scaled pre-asymptotic Wald test with F critical values has more accurate size in finite samples than the usual Wald test with chi-square critical values.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP06/12

Klassifikation
Wirtschaft
Thema
Weak Dependence
Sieve M Estimation
Sieve Riesz Representor
Irregular Functional
Misspecification
Pre-asymptotic Variance
Orthogonal Series Long Run Variance Estimation
F Distribution

Ereignis
Geistige Schöpfung
(wer)
Chen, Xiaohong
Liao, Zhipeng
Sun, Yixiao
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2012

DOI
doi:10.1920/wp.cem.2012.0612
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chen, Xiaohong
  • Liao, Zhipeng
  • Sun, Yixiao
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2012

Ähnliche Objekte (12)