Arbeitspapier
Sieve inference on semi-nonparametric time series models
The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we establish a surprising result that the asymptotic variances of plug-in sieve M estimators of irregular (i.e., slower than root-T estimable) functionals do not depend on temporal dependence. Nevertheless, ignoring the temporal dependence in small samples may not lead to accurate inference. We then propose an easy-to-compute and more accurate inference procedure based on a pre-asymptotic sieve variance estimator that captures temporal dependence. We construct a pre-asymptotic Wald statistic using an orthonormal series long run variance (OS-LRV) estimator. For sieve M estimators of both regular (i.e., root-T estimable) and irregular functionals, a scaled pre-asymptotic Wald statistic is asymptotically F distributed when the series number of terms in the OS-LRV estimator is held fixed. Simulations indicate that our scaled pre-asymptotic Wald test with F critical values has more accurate size in finite samples than the usual Wald test with chi-square critical values.
- Sprache
-
Englisch
- Erschienen in
-
Series: cemmap working paper ; No. CWP06/12
- Klassifikation
-
Wirtschaft
- Thema
-
Weak Dependence
Sieve M Estimation
Sieve Riesz Representor
Irregular Functional
Misspecification
Pre-asymptotic Variance
Orthogonal Series Long Run Variance Estimation
F Distribution
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Chen, Xiaohong
Liao, Zhipeng
Sun, Yixiao
- Ereignis
-
Veröffentlichung
- (wer)
-
Centre for Microdata Methods and Practice (cemmap)
- (wo)
-
London
- (wann)
-
2012
- DOI
-
doi:10.1920/wp.cem.2012.0612
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Chen, Xiaohong
- Liao, Zhipeng
- Sun, Yixiao
- Centre for Microdata Methods and Practice (cemmap)
Entstanden
- 2012