Embedding modes into semimodules, Part III
Abstract: In the first part of this paper, we considered the problem of constructing a (commutative unital) semiring defining the variety of semimodules whose idempotent subreducts lie in a given variety of modes. We provided a general construction of such semirings, along with basic examples and some general properties. In the second part of the paper we discussed some selected varieties of modes, in particular, varieties of affine spaces, varieties of barycentric algebras and varieties of semilattice modes, and described the semirings determining their semi-linearizations, the varieties of semimodules having these algebras as idempotent subreducts. The third part is devoted to varieties of differential groupoids and more general differential modes, and provides the semirings of the semi-linearizations of these varieties.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Embedding modes into semimodules, Part III ; volume:44 ; number:4 ; year:2011 ; pages:791-800 ; extent:10
Demonstratio mathematica ; 44, Heft 4 (2011), 791-800 (gesamt 10)
- Creator
-
Pilitowska, Agata
Romanowska, Anna B.
- DOI
-
10.1515/dema-2013-0345
- URN
-
urn:nbn:de:101:1-2411171630468.936211978213
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:22 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Pilitowska, Agata
- Romanowska, Anna B.