Embedding modes into semimodules, Part III

Abstract: In the first part of this paper, we considered the problem of constructing a (commutative unital) semiring defining the variety of semimodules whose idempotent subreducts lie in a given variety of modes. We provided a general construction of such semirings, along with basic examples and some general properties. In the second part of the paper we discussed some selected varieties of modes, in particular, varieties of affine spaces, varieties of barycentric algebras and varieties of semilattice modes, and described the semirings determining their semi-linearizations, the varieties of semimodules having these algebras as idempotent subreducts. The third part is devoted to varieties of differential groupoids and more general differential modes, and provides the semirings of the semi-linearizations of these varieties.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Embedding modes into semimodules, Part III ; volume:44 ; number:4 ; year:2011 ; pages:791-800 ; extent:10
Demonstratio mathematica ; 44, Heft 4 (2011), 791-800 (gesamt 10)

Urheber
Pilitowska, Agata
Romanowska, Anna B.

DOI
10.1515/dema-2013-0345
URN
urn:nbn:de:101:1-2411171630468.936211978213
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:22 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Pilitowska, Agata
  • Romanowska, Anna B.

Ähnliche Objekte (12)