Computationally efficient parameter estimation for high-dimensional ocean biogeochemical models

Abstract Biogeochemical (BGC) models are widely used in ocean simulations for a range of applications but typically include parameters that are determined based on a combination of empiricism and convention. Here, we describe and demonstrate an optimization-based parameter estimation method for high-dimensional (in parameter space) BGC ocean models. Our computationally efficient method combines the respective benefits of global and local optimization techniques and enables simultaneous parameter estimation at multiple ocean locations using multiple state variables. We demonstrate the method for a 17-state-variable BGC model with 51 uncertain parameters, where a one-dimensional (in space) physical model is used to represent vertical mixing. We perform a twin-simulation experiment to test the accuracy of the method in recovering known parameters. We then use the method to simultaneously match multi-variable observational data collected at sites in the subtropical North Atlantic and Pacific. We examine the effects of different objective functions, sometimes referred to as cost functions, which quantify the disagreement between model and observational data. We further examine increasing levels of data sparsity and the choice of state variables used during the optimization. We end with a discussion of how the method can be applied to other BGC models, ocean locations, and mixing representations.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Computationally efficient parameter estimation for high-dimensional ocean biogeochemical models ; volume:17 ; number:2 ; year:2024 ; pages:621-649 ; extent:29
Geoscientific model development ; 17, Heft 2 (2024), 621-649 (gesamt 29)

Urheber
Kern, Skyler
McGuinn, Mary E.
Smith, Katherine M.
Pinardi, Nadia
Niemeyer, Kyle E.
Lovenduski, Nicole S.
Hamlington, Peter E.

DOI
10.5194/gmd-17-621-2024
URN
urn:nbn:de:101:1-2024020103265504326584
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:23 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Kern, Skyler
  • McGuinn, Mary E.
  • Smith, Katherine M.
  • Pinardi, Nadia
  • Niemeyer, Kyle E.
  • Lovenduski, Nicole S.
  • Hamlington, Peter E.

Ähnliche Objekte (12)