Arbeitspapier

Pseudolikelihood estimation of the stochastic frontier model

Stochastic frontier analysis is a popular tool to assess firm performance. Almost universally it has been applied using maximum likelihood estimation. An alternative approach, pseudolikelihood estimation, decouples estimation of the error component structure and the production frontier, has been adopted in both the nonparametric and panel data settings. To date, no formal comparison has yet to be conducted comparing these methods in a standard, parametric cross sectional framework. We produce a comparison of these two competing methods using Monte Carlo simulations. Our results indicate that pseudolikelihood estimation enjoys almost identical performance to maximum likelihood estimation across a range of scenarios and performance metrics, and for certain metrics outperforms maximum likelihood estimation when the distribution of inefficiency is incorrectly specied.

ISBN
978-3-86788-804-2
Language
Englisch

Bibliographic citation
Series: Ruhr Economic Papers ; No. 693

Classification
Wirtschaft
Subject
stochastic frontier analysis
maximum likelihood
production function
Monte Carlo simulation

Event
Geistige Schöpfung
(who)
Andor, Mark
Parmeter, Christopher
Event
Veröffentlichung
(who)
RWI - Leibniz-Institut für Wirtschaftsforschung
(where)
Essen
(when)
2017

DOI
doi:10.4419/86788804
Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Andor, Mark
  • Parmeter, Christopher
  • RWI - Leibniz-Institut für Wirtschaftsforschung

Time of origin

  • 2017

Other Objects (12)