Artikel
Patients, primary care, and policy: Agent-based simulation modeling for health care decision support
Primary care systems are a cornerstone of universally accessible health care. The planning, analysis, and adaptation of primary care systems is a highly non-trivial problem due to the systems' inherent complexity, unforeseen future events, and scarcity of data. To support the search for solutions, this paper introduces the hybrid agent-based simulation model SiM-Care. SiM-Care models and tracks the micro-interactions of patients and primary care physicians on an individual level. At the same time, it models the progression of time via the discrete-event paradigm. Thereby, it enables modelers to analyze multiple key indicators such as patient waiting times and physician utilization to assess and compare primary care systems. Moreover, SiM-Care can evaluate changes in the infrastructure, patient behavior, and service design. To showcase SiM-Care and its validation through expert input and empirical data, we present a case study for a primary care system in Germany. Specifically, we study the immanent implications of demographic change on rural primary care and investigate the effects of an aging population and a decrease in the number of physicians, as well as their combined effects.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Health Care Management Science ; ISSN: 1572-9389 ; Volume: 24 ; Year: 2021 ; Issue: 4 ; Pages: 799-826 ; New York, NY: Springer US
- Klassifikation
-
Medizin, Gesundheit
- Thema
-
Hybrid simulation
Agent-based modeling
Discrete-event simulation
Primary care
Decision support
Operations research
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Comis, Martin
Cleophas, Catherine
Büsing, Christina
- Ereignis
-
Veröffentlichung
- (wer)
-
Springer US
- (wo)
-
New York, NY
- (wann)
-
2021
- DOI
-
doi:10.1007/s10729-021-09556-2
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Comis, Martin
- Cleophas, Catherine
- Büsing, Christina
- Springer US
Entstanden
- 2021