Artikel

Patients, primary care, and policy: Agent-based simulation modeling for health care decision support

Primary care systems are a cornerstone of universally accessible health care. The planning, analysis, and adaptation of primary care systems is a highly non-trivial problem due to the systems' inherent complexity, unforeseen future events, and scarcity of data. To support the search for solutions, this paper introduces the hybrid agent-based simulation model SiM-Care. SiM-Care models and tracks the micro-interactions of patients and primary care physicians on an individual level. At the same time, it models the progression of time via the discrete-event paradigm. Thereby, it enables modelers to analyze multiple key indicators such as patient waiting times and physician utilization to assess and compare primary care systems. Moreover, SiM-Care can evaluate changes in the infrastructure, patient behavior, and service design. To showcase SiM-Care and its validation through expert input and empirical data, we present a case study for a primary care system in Germany. Specifically, we study the immanent implications of demographic change on rural primary care and investigate the effects of an aging population and a decrease in the number of physicians, as well as their combined effects.

Sprache
Englisch

Erschienen in
Journal: Health Care Management Science ; ISSN: 1572-9389 ; Volume: 24 ; Year: 2021 ; Issue: 4 ; Pages: 799-826 ; New York, NY: Springer US

Klassifikation
Medizin, Gesundheit
Thema
Hybrid simulation
Agent-based modeling
Discrete-event simulation
Primary care
Decision support
Operations research

Ereignis
Geistige Schöpfung
(wer)
Comis, Martin
Cleophas, Catherine
Büsing, Christina
Ereignis
Veröffentlichung
(wer)
Springer US
(wo)
New York, NY
(wann)
2021

DOI
doi:10.1007/s10729-021-09556-2
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Comis, Martin
  • Cleophas, Catherine
  • Büsing, Christina
  • Springer US

Entstanden

  • 2021

Ähnliche Objekte (12)