Arbeitspapier

Sparse network asymptotics for logistic regression

Consider a bipartite network where N consumers choose to buy or not to buy M different products. This paper considers the properties of the logistic regression of the N ×M array of "i-buys-j" purchase decisions, [Yij ] 1ÈiÈN,1ÈjÈM, onto known functions of consumer and product attributes under asymptotic sequences where (i) both N and M grow large and (ii) the average number of products purchased per consumer is finite in the limit. This latter assumption implies that the network of purchases is sparse: only a (very) small fraction of all possible purchases are actually made (concordant with many realworld settings). Under sparse network asymptotics, the first and last terms in an extended Hoeffding-type variance decomposition of the score of the logit composite log-likelihood are of equal order. In contrast, under dense network asymptotics, the last term is asymptotically negligible. Asymptotic normality of the logistic regression coefficients is shown using a martingale central limit theorem (CLT) for triangular arrays. Unlike in the dense case, the normality result derived here also holds under degeneracy of the network graphon. Relatedly, when there "happens to be" no dyadic dependence in the dataset in hand, it specializes to recently derived results on the behavior of logistic regression with rare events and iid data. Sparse network asymptotics may lead to better inference in practice since they suggest variance estimators which (i) incorporate additional sources of sampling variation and (ii) are valid under varying degrees of dyadic dependence.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP51/20

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
Multiple or Simultaneous Equation Models: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
Thema
Networks
Exchangeable Random Arrays
Dyadic Clustering
Sparse Networks
Logistic Regression
Rare Events
Marginal Effects

Ereignis
Geistige Schöpfung
(wer)
Graham, Bryan S.
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2020

DOI
doi:10.47004/wp.cem.2020.5120
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Graham, Bryan S.
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2020

Ähnliche Objekte (12)