Machine learning for precision diagnostics of autoimmunity

Abstract: Early and accurate diagnosis is crucial to prevent disease development and define therapeutic strategies. Due to predominantly unspecific symptoms, diagnosis of autoimmune diseases (AID) is notoriously challenging. Clinical decision support systems (CDSS) are a promising method with the potential to enhance and expedite precise diagnostics by physicians. However, due to the difficulties of integrating and encoding multi-omics data with clinical values, as well as a lack of standardization, such systems are often limited to certain data types. Accordingly, even sophisticated data models fall short when making accurate disease diagnoses and presenting data analyses in a user-friendly form. Therefore, the integration of various data types is not only an opportunity but also a competitive advantage for research and industry. We have developed an integration pipeline to enable the use of machine learning for patient classification based on multi-omics data in combination with clinical values and laboratory results. The application of our framework resulted in up to 96% prediction accuracy of autoimmune diseases with machine learning models. Our results deliver insights into autoimmune disease research and have the potential to be adapted for applications across disease conditions

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Scientific reports. - 14, 1 (2024) , 27848, ISSN: 2045-2322

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2024
Urheber
Kruta, Jan
Carapito, Raphael
Trendelenburg, Marten
Martin, Thierry
Rizzi, Marta
Voll, Reinhard
Cavalli, Andrea
Natali, Eriberto
Meier, Patrick
Stawiski, Marc
Mosbacher, Johannes
Mollet, Annette
Santoro, Aurelia
Capri, Miriam
Giampieri, Enrico
Schkommodau, Erik
Miho, Enkelejda

DOI
10.1038/s41598-024-76093-7
URN
urn:nbn:de:bsz:25-freidok-2611393
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:26 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2024

Ähnliche Objekte (12)