Artikel
Machine learning in futures markets
In this paper, we demonstrate how a well-established machine learning-based statistical arbitrage strategy can be successfully transferred from equity to futures markets. First, we preprocess futures time series comprised of front months to render them suitable for our returns-based trading framework and compile a data set comprised of 60 futures covering nearly 10 trading years. Next, we train several machine learning models to predict whether the h-day-ahead return of each future out- or underperforms the corresponding cross-sectional median return. Finally, we enter long/short positions for the top/flop-k futures for a duration of h days and assess the financial performance of the resulting portfolio in an out-of-sample testing period. Thereby, we find the machine learning models to yield statistically significant out-of-sample break-even transaction costs of 6.3 bp - a clear challenge to the semi-strong form of market efficiency. Finally, we discuss sources of profitability and the robustness of our findings.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 14 ; Year: 2021 ; Issue: 3 ; Pages: 1-14 ; Basel: MDPI
- Klassifikation
-
Wirtschaft
- Thema
-
machine learning
futures markets
statistical arbitrage
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Waldow, Fabian
Schnaubelt, Matthias
Krauss, Christopher
Fischer, Thomas G.
- Ereignis
-
Veröffentlichung
- (wer)
-
MDPI
- (wo)
-
Basel
- (wann)
-
2021
- DOI
-
doi:10.3390/jrfm14030119
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Waldow, Fabian
- Schnaubelt, Matthias
- Krauss, Christopher
- Fischer, Thomas G.
- MDPI
Entstanden
- 2021