Journal article | Zeitschriftenartikel

Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?

This paper considers Bayesian regression with normal and double-exponential priors as forecasting methods based on large panels of time series. We show that, empirically, these forecasts are highly correlated with principal component forecasts and that they perform equally well for a wide range of prior choices. Moreover, we study conditions for consistency of the forecast based on Bayesian regression as the cross-section and the sample size become large. This analysis serves as a guide to establish a criterion for setting the amount of shrinkage in a large cross-section.

Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?

Urheber*in: Mol, Christine de; Giannone, Domenico; Reichlin, Lucrezia

Free access - no reuse

0
/
0

Extent
Seite(n): 318-328
Language
Englisch
Notes
Status: Postprint; begutachtet (peer reviewed)

Bibliographic citation
Journal of Econometrics, 146(2)

Subject
Wirtschaft
Sozialwissenschaften, Soziologie
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
Volkswirtschaftslehre

Event
Geistige Schöpfung
(who)
Mol, Christine de
Giannone, Domenico
Reichlin, Lucrezia
Event
Veröffentlichung
(where)
Niederlande
(when)
2008

DOI
URN
urn:nbn:de:0168-ssoar-198289
Rights
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
Last update
21.06.2024, 4:27 PM CEST

Data provider

This object is provided by:
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. If you have any questions about the object, please contact the data provider.

Object type

  • Zeitschriftenartikel

Associated

  • Mol, Christine de
  • Giannone, Domenico
  • Reichlin, Lucrezia

Time of origin

  • 2008

Other Objects (12)