Arbeitspapier

Forecasting using a large number of predictors: Is Bayesian regression a valid alternative to principal components?

This paper considers Bayesian regression with normal and doubleexponential priors as forecasting methods based on large panels of time series. We show that, empirically, these forecasts are highly correlated with principal component forecasts and that they perform equally well for a wide range of prior choices. Moreover, we study the asymptotic properties of the Bayesian regression under Gaussian prior under the assumption that data are quasi collinear to establish a criterion for setting parameters in a large cross-section.

Sprache
Englisch

Erschienen in
Series: ECB Working Paper ; No. 700

Klassifikation
Wirtschaft
Bayesian Analysis: General
Estimation: General
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
Forecasting Models; Simulation Methods
Thema
Bayesian VAR
large cross-sections
Lasso regression
principal components
ridge regression
Prognoseverfahren
Zeitreihenanalyse
Regressionsanalyse
Bayes-Statistik
VAR-Modell
Theorie

Ereignis
Geistige Schöpfung
(wer)
De Mol, Christine
Giannone, Domenico
Reichlin, Lucrezia
Ereignis
Veröffentlichung
(wer)
European Central Bank (ECB)
(wo)
Frankfurt a. M.
(wann)
2006

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • De Mol, Christine
  • Giannone, Domenico
  • Reichlin, Lucrezia
  • European Central Bank (ECB)

Entstanden

  • 2006

Ähnliche Objekte (12)