Arbeitspapier

Forecasting Swiss exports using Bayesian forecast reconciliation

This paper conducts an extensive forecasting study on 13,118 time series measuring Swiss goods exports, grouped hierarchically by export destination and product category. We apply existing state of the art methods in forecast reconciliation and introduce a novel Bayesian reconciliation framework. This approach allows for explicit estimation of reconciliation biases, leading to several innovations: Prior judgment can be used to assign weights to specific forecasts and the occurrence of negative reconciled forecasts can be ruled out. Overall we find strong evidence that in addition to producing coherent forecasts, reconciliation also leads to improvements in forecast accuracy.

Sprache
Englisch

Erschienen in
Series: KOF Working Papers ; No. 457

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Forecasting Models; Simulation Methods
General Aggregative Models: Forecasting and Simulation: Models and Applications
Thema
Hierarchical Forecasting
Bayesian Forecast Reconciliation
Swiss Exports
Optimal Forecast Combination

Ereignis
Geistige Schöpfung
(wer)
Eckert, Florian
Hyndman, Rob J.
Panagiotelis, Anastasios
Ereignis
Veröffentlichung
(wer)
ETH Zurich, KOF Swiss Economic Institute
(wo)
Zurich
(wann)
2019

DOI
doi:10.3929/ethz-b-000354388
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Eckert, Florian
  • Hyndman, Rob J.
  • Panagiotelis, Anastasios
  • ETH Zurich, KOF Swiss Economic Institute

Entstanden

  • 2019

Ähnliche Objekte (12)